

Composite	Essential knowledge					
title						
What are living things made of?	 All living organisms are made up of cells. Animal Cell structure include: Nucleus Membrane Cytoplasm Ribosome Mitochondria Plant cell structure include organelles above plus: Cell wall Chloroplast Vacuole Function of the cell structures. Cytoplasm - Chemical reactions occur here Nucleus - Contains the genetic information. Controls the cell Mitochondria - Carry out respiration to release energy Chloroplast - Photosynthesis occurs here. Vacuole - Contain cell sap to keep cell swollen. Cell Wall - Provides structure and support. 	Animal cell () () () () () () () () () () () () ()	Cytoplasm Nucleus Cell membrane Cellulose cell wall Mitochondrion rmanent vacuole Chloroplast			

Parts of a microscope:

Year 7 biology knowledge organiser

eye piece • Stage • Eyepiece lens Objective lens • Focusing knob nose piece Preparation of cheek cell with stain method: objective len 1. Using a cotton wool bud, rub the inside of stag your cheek to collect the cells. ,coarse focusing 2. Streak the cotton wool bud onto a knob condenser lens microscope slide. fine focusing knob and diaphragm 3. Place two to three drops of methylene blue solution onto the streak (stains make the cell parts easer to see) 4. Carefully place the cover slip onto the slide. lamp 5. Observe under the microscope using low power before moving to a higher power. To calculate overall magnification: Eyepiece lens x objective lens Using a microscope Magnification is how many times bigger and image is compared to its original size. Resolution is the ability to distinguish between two separate points on an image (how detailed it is)

What is DNA?	chromosomes	A chromosome contains one long DNA molecule that is tightly coiled many times. Proteins hold the shape together.	DNA has a DNA consis The comp	a double helix shape. ats of a backbone and bases. blimentary base pairs are: A and T G and C Backbone
Other types of cell	Structure of bacterium: • Unicellular (one cell) • NO nucleus • Cell wall • Chromosomal DNA • Plasmid DNA • Some have flagella Other microorganisms include	chromosomal DNA USA DA	cell membrane flagellum (not always prese cell wall	ent) Bacteria ar microorganisms (v living things Not all bacteria are b are useful to hur

DNA Chromosome Double Helix Base

re very small gs)

bad. Many mans. Unicellular Multicellular Bacterium/ (bacteria as plural) Plasmid Chromosomal DNA Flagellum Specialised cell Differentiated

	Roles of differentiated/ spec Egg Sperm red blood cell root hair	ialised cells in multicellular orga	anisms including:	Multice organisms many
	Cell	Function	Adaptations	Image
	Red blood cell	To carry oxygen around the body	Large surface area to carry oxygen. Haemoglobin to carry oxygen. No nucleus for plenty of space for haemoglobin.	Specialised cells that specific fund are well ac
	Sperm cell	To reach female egg cell and fertilise it (fuse with it)	Tail for swimming.Acrosome with digestive enzymes to help break through egg cell.Mitochondria to provide energy.	carry out the in a num different
	Egg cell	To be fertilised by a sperm cell	Only allows one sperm cell through membrane. Contains yolk which provides a large store of nutrients	Eukaryotic c a nuc
	Root hair cell	to absorb water from the soil for the plant.	Thin membrane and a large surface area to speed up the rate of diffusion.	Prokaryotic contain a
	Practical investigation <u>Aim 1-</u> To create plates using <u>Aim 2</u> – To investigate wheth Method (aseptic technique):	g an aseptic technique to test w her washing your hands has an i	hat is living on your skin. mpact on what's living on your skin	Aseptic technique means using prac procedures to prevent contamir
How can we see bacteria?	 Wipe down the surface Put the blue roll in the Place a piece of foil on Set up a Bunsen burner Collect an agar plate, d Your partner can take t Place the lid back on th Turn off the Bunsen bur Wipe down the area yo 	you are going to work on using an bucket provided – not the bin the desk r and leave this on the blue flame ne raw a line across the bottom and wi he lid off whilst you carefully rub you the plate and tape shut with a cross s rner, and return the foil u have been working on with blue r	tiseptic and blue roll. ear where you are working rite your initials on it. our finger across the agar – do not push too hard. hape – do not completely seal the agar plate! roll and place this in the bucket.	

ellular consist of cells.	
I cells are thave a ction. They dapted to eir function aber of t ways.	
ells contain leus cells do not nucleus	
ctices and nation	Aseptic technique Sterile Agar plate Petri dish Microorganism

	All living organisms can do the 7 fo	llowing life processes:	
How can we use microorganisms ?	Movement Respiration Sensitivity Growth Reproduction Excretion Nutrition	<section-header></section-header>	Aerobic respiration word equation Glucose + Oxygen → Carbon dioxide +
	Uses of fungi (yeast): Making bread - Carbon dioxide releas Making beer – through fermentation, aerobically respire. Uses of bacteria: Making yogurt. Method: 1. Heat 100cm ³ milk to 85°C in a 2. Cool milk to 43°C, continue sti 3. Add 1 teaspoon of starter (nat 4. Put in plastic cup an cover in o 5. These will be incubated. Bacteria are also found in our digestiv	ed in respiration causes the bread to rise. air is kept out of the mixture so the yeast can beaker on a tripod and gauze. irring tural yogurt with bacteria in) cling film with your name on. e system – these help us digest our food.	Anaerobic respiration in <u>yeast</u> : Glucose → Carbon dioxide + ethanol (an

	Mal	e structure names a Penis Testis Sperm duct Scrotum Urethra	ind function to include:	1					bladde glands sperm du penis	r ict	
		Male reproductive structure	Description of structure	Funct	ion			25	- urethra	the st	
		Testes	oval organs in the scrotum	produ sex h	uce sperm and the male ormones	e	0		testis		
		Scrotum	bag of skin containing the testes	keeps the te the re	s the temperature of estes slightly lower that est of the body	in			Sciotan		
		Glands	small structures near the urethra	add f keep	luid to the sperm to them alive						
		Sperm duct	muscular ducts about 30 cm long	carry to the	sperm from the testes e penis	5					
		Urethra	tube in penis	carrie throu	es urine or sperm out gh the penis						
Reproductive		Penis	sex organ, cylindrical in shape	inser fema	ts sperm into the le						
organs	Fen	 ale structure name Uterus Ovaries Vagina Cervix Oviduct 	s and function							 oviduct — ovary — uterus — bladder — cervix — urethra — 	
		Female reproducti structure	ve Description of structure		Function			<u> </u>		– vagina –	
		Ovaries	pair of small, oval-shape glands, either side of the uterus	ed è	store and release eggs						
		Oviduct	tube connecting ovary a uterus	nd the	carries the egg to the ute	erus					
		Uterus	hollow, pear-shaped org with a thick lining	an,	where a fetus/baby develops until birth						
		Cervix	ring of muscle at the ent to the uterus	trance	keeps the fetus/baby in p	place					
		Vagina	muscular canal ending a cervix	t the	receives the sperm during sexual intercourse	g					
		Urethra	tube from bladder		carries urine out of the bo	ody					

Penis Vagina Genitals Sperm Egg Testis Sperm Duct Semen Glands Scrotum Ovary Oviduct Uterus Cervix

Irvier Hair under the arms Hip bones wider eight gain on hips muscles get bigger d stronger	Hormone Puberty Adolescence Menstrual Cycle Menopause Oestrogen Progesterone Testosterone
tail	Fertilisation Haploid Diploid Gamete Zygote Sexual intercourse Ovulation Ejaculation

	 Plants can reproduce with either sexual or asexual reproduction ASEXUAL REPRODUCTION means that the organism makes an exact copy of itself (a clone) FLOWERING PLANTS reproduce sexually. Sex cells (gametes) fuse together (fertilisation) Flower structure to include the: Stigma and stamen Stamen Ovary Anther and filament Petals and sepals 	stamen anther filament petal sepal	C to receptacle
	Dellingtion is the transfer of pollon from anthors to stigmas	Structure	
	This must occur before a male sex cell can fuse with a female sex cell. Methods of pollination:	Petals	Large, brightly coloured to attract in
	 Bees/ insects Wind/ water 	Sepals	or brown if plant is wind pollinated) Small, green, leaf-like structures to p bud
	Artificial	Stamens	Male parts of the flower
How do plants	Fertilisation	Anther	Produces lots of small pollen grains – gametes
now do plants		Filament	Attaches the anther to the flower
reproduce?	Once pollen has landed on the stigma.	Carpel	Female part of the flower
reproduce.	 The male gamete travels down the style towards the ovary 	Stigma	Where pollen lands during pollination
	 The gametes fuse in the ovary – fertilisation! 	Style	Transports the male sex cell to the o
	Seed formation	Ovary	Produces small number of large ovule Ovary often forms the fruit once ovu
	After fertilisation the fertilised ovule divides into many cells to form a seed.	Dispersal o	f seeds
	Seeds can be dispersed by:	Method	Description of seeds
	Wind Animals	Wind Dispersal	Light - blown and spread by the wind
	 Water Self-dispersal 	Animal dispersal	Either eaten by animals and egested in droppings Or have hooks to cling to fur of animals
		Water dispersal	Contain air spaces to help them float
		Self-dispersal	Fruit walls of plants simply dry out and burst. Split ovary scatters seeds explosively.

സ	Л
	-
וס	7
Γ	Л

stigma style ovary ovule

nsects (small, green

protect flower in

contain male

ovary 2**s** - female gametes. ules are fertilised. Stigma Stamen Style Ovary Pollen tube Sexual Asexual Anther Pollen Pollination

Why are living things different?	Variation – differences in characteristics. These differences can be environmental or genetic/inherited. Continuous vs discontinuous variation Continuous variation are those which can have any value within a range e.g. height and mass Discontinuous variation are those which have distinct groups e.g. hair colour, eye colour, blood group	Inherited Variation Eye colour Ear lobes Blood group Inherited diseases Inherited ch never	Environmental Variation Hair length Sun tan Tattoo Ear piercing	A Mixture of Both Weight Intelligence Height Speed at running	Environmental Genetic Continuous Discontinuous Variation Genes Inherit Mutation Characteristic
How are living things classified?	 All organisms can be placed into groups based on their characteristics This is called classification. Hierarchy of taxonomy: Kingdom (5 kingdoms – plants, animals, prokaryotes, fungi, protists). Phylum Class Order Family Genus Species Classes of vertebrate and main distinguishing features: Mammals- live young (viviparous), lungs, fur, constant body temperature) Birds- feathers, eggs (on land-hard shell), lungs, body temperature depends on surroundings. Amphibians- eggs (in water- soft), lungs and gills, body temperature depends on surroundings. 	sification ertebrates) s imates ly : <u>Hominidae</u> Genus : Homo Species: <i>Homo sapiens</i> Vertebrate Invertebrate	Member species car to pro of s – organisms with e – organisms with	n breed together duce fertile fspring.	Classification Kingdom Species Vertebrate Invertebrate Viviparous Oviparous

How are living things suited to their environment?	 Adaptation as a feature of an organism which allows in to thrive/ survive in its habitat. Common features in a certain habitat including: Hot desert- large SA for cooling, water storage, plant defences. Polar- small SA- large size, fat, fur or similar. Adaptations of a typical: Predator- forward facing eyes, speed, claws or talons, sharp beak or teeth. Prey- eyes on side of head, camouflage, behaviour eg burrowing. 	2 fat hur slit nostrils wolly mane on neck, head and chin wide feet with 2 toes	-filled mps long wool fur on humps, back and legs long, thin tail with tufted end Arctic Martes pen s s small eyes, ears and nose for protection egainst the cold furry feet helps
Where do living things live?	The effects of Biotic and Abiotic factors on an ecosystem and its com Biotic factors are the living organisms in an ecosystem Examples of Biotic factors: • New predator/ prey • Disease • Human activity Abiotic factors are the non-living factors that affect an ecosystem. Examples of Abiotic factors: • Light intensity/ day length • Temperature/ climate • Availability of water • Terrain • pH of soil/water	munity. The biotic and can affect which in a particular a	abiotic factors n organisms live rea (ecosystem)

	Year 7 biology knowledge organiser	
How do living things interact?	Organisms in an ecosystem are affected by competition for resources including: • Food/ prey • Water • Shelter • Territory • Mates That this competition is both inter- (between) and intra- (within) specific (a species). Food chains show how organism rely on other organism for food. • Producer • Primary consumer (herbivore) • Secondary consumer (top/ apex carnivore/predator) • Tertiary consumer (top/ apex carnivore/predator) • Tertiary consumer (top/ apex carnivore/predator) • Defouncer • morganism that • morducers • merbivore = an organism that eats both consumers and producers • morganism that only • an organism that only	Energy Transfer Relationship Food chain Omnivore Herbivore Carnivore Producer Primary/ Secondary/ Tertiary Consumer
How can we study an ecosystem?	Identify and describe how to use simple equipment systematically to monitor the organisms in an ecosystem. To include: Quadrat Transect Others e.g. pitfall traps Poter - invertebrates Invertebrates Others e.g. pitfall traps Sweep nets - or water Ouddrats Invertebrates	Quadrat Transect Sample Ecosystem Population Estimation

	 Using quadrats to estimate population size for a chosen organi Method: Calculate the area of the field (area = length x width). Calculate the area of the quadrat (area = length x width). Calculate how many quadrats fit in the field (area of field). Count and record the number of daisies in one random Repeat stage 4 for a further 9 throws of the quadrat. Calculate the mean number of daisies in one throw of throws ÷ 10). Estimate the number of daisies in the field (mean num daises fit in the field). 	ism e.g. daisies on a field th). ield ÷ area of quadrat). In throw of the quadrat. the quadrat (sum of the daisies in the 10 ober of daises in one throw x how many
	Other observation methods include hides, drones and cameras	S
Why don't plants eat?	Autotrophs – produce their own food e.g. plants Heterotrophs – cannot produce their own food. They need to eat e.g. us! Photosynthesis is a chemical reaction that happen in the chloroplasts of plant cells. Plants need light in order to photosynthesise	Photosynthesis is the chemical reaction that plants use to m glucose (their food). Word equation Carbon + Water Light Glucose + Oxygen Chlorophyll Diffuses Absorbed by roots Used in respiration. Stored as starch Light – from the sun Chlorophyll – pigment found in chlorophyll – pigment found in chlorophyll – pigment found in chloroplasts

Composite title		Essential knowledge				
What are the states of	Matter is the mate Particle diagrams:	erial from which	n everything is m	nade. It can exis	t as three states: Solid, liquid and gas	
matter?	Solid Particles in sol vibrate	ids	Particles in move over	iquid liquids can one another	Gas Particles in gases are spaced out. They move quickly and randomly	State changes are physical changes.
	Properties of solic	ds, liquids and g	gases:		State changes:	They can be reversed.
	Property Is the shape fixed or can it change?	Solid Fixed	Liquid Shape of the container	Gas Shape of the container	Condensatio	
	Does it flow?	Cannot flow	Can flow	Can flow		,
	ls it easy to squash?	No	No	Yes	Freezing Melting	3 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °
	Can you change its volume?	Fixed Volume	Fixed Volume	No Fixed Volume	RDCK'S	
	Does it feel heavy or light?	Heavy	Heavy	Light	ADD ENERGY LIQUIDS	r gases
					THE STATE OF MATTER CHANG	ES AS YOU ADD MORE ENERGY

Key words

State Matter Particles Energy Physical Change Solids Liquids Gases Evaporation Condensation Melting Freezing Sublimation Deposition Vibrate

Year 7 chemistry knowledge organiser

Atom Nucleus Proton Electron Neutron Electron Shell Atomic Number Atomic Mass Electron configuration

Different atoms have different numbers of protons neutrons and electrons. We can use the periodic table to find out how many protons neutrons and electrons in different atoms.

The **atomic number** is the smaller number and the relative atomic mass is the bigger number

Electron configuration shows how many electrons are in each shell. Argon has 18 electrons. It will have 2 electrons on the first shell, 8 on the second shell and 8 on the third shell. Its electron configuration is 2,8,8

are		
-		

	Elements are substances that are made up of <u>one type of atom.</u> For example, pure copper will only contain copper atoms.
What is an element?	The different elements we have discovered on earth are found on the periodic table. Each element is represented by a symbol on the periodic table.
	Some elements consistent of one atom. Some go around in pairs e.g. O_2 , H_2 , some consist of thousands of atoms but they are all elements because they contain one type of atom. Properties of elements can be investigated such as:
	 Conductivity (electrical) Conductivity (thermal) Boiling point Malting point Actinide
	 Metting point State at room temperature Appearance Metal or non-metal Magnetic
How do we	Many scientists were involved in organising elements. A scientist called Dmitri Mendeleev was the first to successfully organise elements into groups where elements with similar properties into groups.
arrange	
elements?	Mendeleev's Periodic Table (1869)
	Li Be B C N O F 6.94 9.01 10.8 120 14.0 16.0 19.0 Na Mg Al Si P S Cl V/III
	K Ca Ti V Cr Mn Fe Co Ni 39.1 40.1 47.9 50.9 52.0 54.9 58.9 58.7 Because elements were grouped by
	Cu Zn As Se Br 63.5 65.4 74.9 79.9 P Bb Sr Y Zr Nb Mo
	85.5 87.6 88.9 91.2 92.9 95.9 101 103 106 Ag Cd In Sn Sb Te I 108 112 115 119 122 128 127 elements
	Ce Ba La W OS Ir Pt 133 137 139 181 184 194 192 195 Au Hg Ti Pb Bi 194 192 195 197 201 204 207 209 1 1 1
	Th U 232 238

Element Periodic table Properties

Periodic table Elements Groups Periods Metals Non-metals

and and and	Hazard symbol	What it means	How to reduce risk of harm.
eryday es		Explosive May explode if exposed to fire, heat, shock, friction.	Avoid ignition sources (sparks, flames, heat) Keep your distance Wear protective clothing
		Flammable if exposed to ignition sources, sparks, heat. Some substances with this symbol may give off flammable gases in contact with water.	Avoid ignition sources (sparks, flames, heat) Keep your distance Wear protective clothing
		Oxidising Agent Can burn even without air, or can intensify fire in combustible materials.	Avoid ignition sources (sparks, flames, heat) Keep your distance Wear protective clothing
		Gas under pressure Contains gas under pressure. Gas released may be very cold. Gas container may explode if heated.	Do not heat containers Avoid contact with skin and eyes
		Corrosive material which may cause skin burns and permanent eye damage.	Avoid contact with skin and eyes Do not breathe vapours or sprays Wear protective clothing

Irritant Corrosive Harmful Toxic Flammable Explosive Pressure

	Toxic Toxic material which may cause life threatening effects even in small amounts and with short exposure.	Do not swallow the material, allow it to come into contact with skin or breathe it
	Health problems May cause serious and prolonged health effects on short or long term exposure.	Do not swallow the material, allow it to come into contact with skin or breathe it.
	Irritant May cause irritation (redness, rash) or less serious toxicity.	Keep away from skin and eyes
	Toxic to the environment Toxic to aquatic organisms and may cause long lasting effects in the environment.	Avoid release to the environment

Year 7 chemistry knowledge organiser

Reaction Reversible Irreversible Reactant Product Effervescence

	Acid
	Alkali
	Base
	Neutral
	Indicator
	ph scale
d to	
uto	

Year 7 chemistry knowledge organiser

What is an indicator?	pH indicators identify if a substance is acidic or basic. Litmus paper as an example of a pH indicator. Colour changes of red, blue and ye acids and bases. Making and using red cabbage indicator!	Type of Litmus Red Blue Yellow	Colour in acie No change Red Red	d Colour in alkali Blue No change Blue	
	 Part 1: Making the indicator Apparatus mortar and pestle boiling tube or conical flask filter paper and a filter funnel hot water red cabbage leaves Method A Put some red cabbage leaves into the mortar. B Add a little hot water. C Grind up the leaves so that you get as much of the colour out as possible. D Filter the mixture and collect the liquid in a tube or flask. 	Part 2: Using your ind Apparatus • red cabbage juice • s • dropping pipette • s Method A Put one of the substan the spotting tile. Write substance in a table. B Add a few drops of you	icator spotting tile substances to test ces into a circle on the name of the ur cabbage juice.	Wear eye prote Nothing should even food and substance being tested C Write the colour in your D Do this again with anot	ection. d be tasted, not drink.
Types of reaction	Identification of different reactions including: Reaction 1: Metals and acids General equation: Metal + acid> Salt + hydrogen Reaction of metal (calcium) and acid (hydrochloric acid) General equation metal + acid → salt + Hydrogen Example: Calcium + Hydrochloric → Calcium + Hydrogen acid Chloride	The first p The Hy est for hydrogen: Squea ver the gas. If there's a s ydrogen	<u>Namin</u> part of the nam second part co ydrochloric acid Nitric acid m Sulphuric acids ky pop test! Pla squeaky pop so	ng salts the comes from the m tomes from the acid: d makes chlorides takes nitrates make sulphates acce a lit splint und it is	aueaky pop test

Indicator Litmus paper Filter

Reaction Reactants Products Combustion

Reaction 2: Metal carbonates and acid General equation: Metal carbonate + acid --> salt + carbon dioxide + water metal + acid \rightarrow salt + Carbon + water carbonate dioxide Test for carbon dioxide: Bubble gas through limewater. If the limewater turns from colourless to a cloudy/milky For example the reaction between hydrochloric acid colour. The gas is carbon and calcium carbonate (marble). dioxide. limewater test $\begin{array}{ccc} \text{Calcium} & + & \text{Hydrochloric} \\ \text{carbonate} & & \text{acid} \end{array} \rightarrow \begin{array}{c} \text{Calcium} \\ \text{Chloride} \end{array} + \begin{array}{c} \text{Carbon} \\ \text{dioxide} \end{array} + \begin{array}{c} \text{water} \\ \text{dioxide} \end{array}$ Reaction 3: Combustion General equation: Fuel + oxygen --> Water + carbon dioxide Fuel + Oxygen → Water + Carbon Dioxide Reaction 4: Metals and oxygen Metal + Oxygen --> Metal oxide Fireworks are really big combustion reactions. In a combustion reaction a fuel reacts with oxygen from the air. Metal + Oxygen \rightarrow Metal oxide Metals react with oxygen to form metal oxides.

Transportation Deposition Sedimentation Fossil

Problems with burning fossil fuels including the release of carbon dioxide (a greenhouse can) that contributes to global warming. The Earth's Greenhouse Effect Only a small amount of the heat energy emitted from the surface passes through the atmosphere directly to space. Most is absorbed About 30% of incoming by greenhouse gas molecules and solar energy is reflected contributes to the energy radiated by the surface and the Burning fossil fuels also About half the solar energy back down to warm the surface and atmosphere. absorbed at the surface SPACE lower atmosphere. Increasing the produces acid rain. This causes evaporates water, adding the concentrations of greenhouse gases lakes and soil to become more most important greenhouse increases the warming of the surface acidic. Crops can fail to grow gas to the atmosphere. and slows loss of energy to space. and aquatic organisms can die. When this water condenses ATMOSPHERE in the atmosphere, it releas-Global warming can lead to ice es the energy that powers caps melting, sea levels rising, storms and produces rain more extreme weather, loss of and snow. SURFACE land and habitats. The surface cools by radiating heat energy upward. The warmer the surface, the greater the amount of heat energy that is adiated upward. Finite resources are substances that can only be used once and are in limited supply. e.g. oil, metals, rocks Finite Finite = Can only be used once and There are a number of reasons why recycling is so Uses less is in limited supply resources important: energy than making from Infinite = Can be used more than scratch Preserves and Reduces litter At home we can recycle: wildlife and mess once or is in unlimited supply Glass recycling Metals Sustainable = Able to be maintained Paper ٠ at a certain rate or level Why is Things can be Card recycling Keeps re-used again Renewable = Will not run out in the habitats safe Plastic important? and again foreseeable future Reduces Saves money waste Saves space

atmosphere

Year 7 chemistry knowledge organiser

Recycling methods:

Resource	How?	Advantages	Disadvantages
Glass	It can be melted, remoulded and reused	The energy needed to do this is less than the energy needed to make new glass from raw materials	Need to sort different coloured glass ready for recycling and transport to the plant.
Metal	It can be melted, remoulded and reused	The energy needed to do this is less than the energy needed to extract new metal from ores	Melting down metals uses energy, producing pollution
Paper	It can be broken up into small pieces and reformed to make new sheets of paper	This takes less energy than making new paper from trees. Less need to cut down trees	Paper can only be recycled a few times before its fibres become too short to be useful
Plastic	It can be melted, remoulded and reused	We use less crude oil and recycling prevents plastic ending up in landfill sites	Different types of plastics have to be sorted

The atmosphere is the layer of gas which surrounds a Planet!

Earth and the The layers of the atmosphere to include:

- Troposphere
- Mesosphere
- Thermosphere
- Ionosphere
- Exosphere
 - Ionosphere isn't always included in diagrams because it overlaps with many layers.

Fluid Diffusion Brownian motion

Composite title	Essential knowledge		
	Forces are a push or pull which can change the speed, direction or shape of an obje All forces are measured in Newtons (N) We cannot see forces so we need to use diagrams to represent them. FREE BODY DIAGRAMS show the forces acting on an isolated object.	rct.	
What is a force?	 Free body diagram: Free body diagrams Use arrows to represent forces. The direction of the arrow shows the direction of the force The size of the arrow represents the size of the force. 	Forces are measured in <u>NEWTONS</u> using a <u>FORCE</u> <u>METER</u> . Objects can be hung from the hook at the bottom of the force meter the scale will show the strength of the force in Newtons.	
What is the overall force?	Forces can be contact or non-contact. Examples of contact forces include: Air resistance, up-thrust, friction, push, pull, normal contact force. Non-contact forces include: Static, magnetism, gravitational force. Forces acting on a single object can be balanced or unbalanced . If forces are balanced the motion of an object will not change – the object will be stationary (still) or will be travelling at a constant speed . Unbalanced forces cause the objects motion to change e.g. accelerate or decelerate.	If there are equal forces pulling on both the force meters they will not move. This is because the forces are BALANCED. 10 N 10 N 10 N 10 N 10 N 10 N 10 N 10 N	

Key words

Force Free-body diagram Newton meter

Balanced Unbalanced Resultant

Meter Newton Calibrate Measure Unit

സന

JD

Speed Distance time

Distance-time graph

Friction Air resistance Lubrication Oppose Aerodynamic

Longitudinal Transverse Amplitude Wavelength Crest Trough Transfer

Matter

Particles in a **solid** are very close together. They are held together with strong bonds. Sound vibrations can move very quickly through solids because the particles are close to each other and bump into each other often. It is easy for the vibrations to be passed on.

Particles in a **liquid** are close together. They are able to move about. Sound vibrations move more slowly than in a solid because the particles are a bit further apart and do not bump into each other quite as often.

· · ((O Ô

In a gas the particles are very far apart. They can move easily in all directions. The particles do not bump into each other very often, so it is more difficult for vibrations to be passed on. Sound vibrations travel more slowly in a gas than they do in solids and liquids.

waves are longitudinal waves.

Volume Pitch Frequency Vibrations Collisions

Source Opaque Translucent Transparent Luminous Reflection Scattering Shadow

w

JD

Energy Store Transfer Potential

Conduction Convection Radiation Particles Vibrate Collide Heat Thermal

2. Convection

3. Radiation

Thermal radiation does not require particles, it transfers heat via a wave (**infrared**). We can't see infrared only feel it as heat.

All hot objects emit infrared radiation – including us!

Special infrared cameras can sense this infrared energy, and produce a picture for us to see.

- There are no particles in space (it is a vacuum) so conduction and convection won't work
- Heat from the sun travels via infrared radiation

When radiation hits something, it can be absorbed or reflected. Light coloured, shiny materials reflect the most radiation. Dull, dark, matt objects absorb the most radiation

Our solar system consists of the sun (a star) and 8 planets (plus dwarf planets, comets, asteroids and many other things)

The order of the planets from the sun are:

Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune

Pluto:

This image is

flawed because

planets are not

equal distances

apart!

Its also very hard

to comprehend the

distances between

these planets

 Pluto was discovered in 1930 and identified as a planet. It was then was reclassified in 2006 from a planet to a dwarf planet after so many others were found!

Many mnemonics can be used

to help remember the order of

planets including:

My Very Easy Method Just

Speeds Up Naming (planets)

- A planet is a rocky or gaseous spherical celestial body that orbits the sun and does not emit its own light.
- A dwarf planet is smaller than 3031 miles in diameter and is not big enough to have a distinct orbital path

Our solar system

Solar system Planet Dwarf planet Sun

- Day Year Orbit Ellipse Axis Season
- Hemisphere

Electricity Conductor Insulator Battery Circuit

Mains electricity Plug Fuse

Magnetism: an invisible force that pushes or pulls magnetic materials.

Magnetic materials are materials that are attracted to a magnet, but do not attract or repel each other.

There are only three magnetic elements, they are: Iron, Nickel and Cobalt

Non-magnetic materials are not affected by magnets this includes metals such as gold, aluminium, silver and copper.

Magnets contain tiny particles called 'domains.' If the domains are pointing in the same direction – the object is magnetised. If they are pointing in random directions the object is not magnetised.

A magnet has two poles.

diagram using field lines

Pole – part of the magnet with strongest magnetic force.

The poles are called North pole and South pole

Magnets have a magnetic field around them.

This is the area where they can attract or repel a

magnetic material. These can be shown on a

What is magnetism?

Field lines always go out of the North pole and into the South. This is shown by arrows.

Law of magnets

If you bring 2 bar magnets close together...

TWO LIKE POLES REPEL

The Earth has its own magnetic field which we can use for navigation (compasses always point towards the north pole)

Magnet Domain Attract Repel Permanent Field Compass Pole